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The transient motion of a floating body 

By S. J. MASKELL A N D  F. URSELL 
Department of Mathematics, University of Manchester 

(Received 4 December 1969) 

An analytical method of calculating the body motion was given in an earlier 
paper. Viscosity and surface tension were neglected, and the equations of motion 
were linearized. It was found that, for a half-immersed horizontal circular 
cylinder of radius a, the vertical motion at  time r(a/g)t is described by the 
functions hl(r) (for an initial velocity) and h2(r) (for an initial displacement) where 

m e-iurdu 
h1(7) = 's 

277 1 - $TU'( 1 + A(u)) 

and 
u( 1 + A(u)) e--iuT d u  s -m l - $ ~ ~ ~ ( l + A ( u ) )  ' 

h'(7) = -gi 

The function A(u) in these integrals is the force coefficient which describes the 
action of the fluid on the body in a forced periodic motion of angular frequency 
u(g/a)*. To determine A(u) for any one value of u an infinite system of linear 
equations must be solved. 

In the present paper a numerical study is made of the functions hl(r) and 
h2(r). The integrals defining hl(r) and h2(7) are not immediately suitable for 
numerical integration, for small r because the integrands decrease slowly as u 
increases, for large r because of the oscillatory factor e-iu*. It is shown how these 
difficulties can be overcome by using the properties of A(u) in the complex 
u-plane. It is found that after an initial stage the motion of the body is closely 
approximated by a damped harmonic oscillatory motion, except during a final 
stage of decay when the motion is non-oscillatory and the amplitude is very small. 
It is noteworthy that the motion of the body can be found accurately, although 
little can be said about the wave motion in the fluid. 

1. Introduction 
Consider a rigid body floating on the free surface of a fluid, which is slightly dis- 

turbed from its position of stable equilibrium. The ensuing free motion consists of 
a motion of the body, together with a wave motion of the fluid which (if the fluid is 
unbounded horizontally) progressively carries energy away from the body to  
infinity. Ultimately the body and the fluid return to their equilibrium state of 
rest. In  a previous paper (Ursell 1964, hereafter referred to as I) the transient 
motion of the body was studied analytically. Viscosity and surface tension were 
neglected, and the equations of motion were linearized. The method described in 
I is applicable to bodies of arbitrary shape in two or three dimensions, and was 
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applied in I to the heaving (i.e. vertical) motion of a half-immersed circular 
cylinder of radius a. The free motion of the cylinder was regarded as the super- 
position of simple harmonic motions, and the vertical displacement of the body 
was thus obtained in the form of Fourier integrals. These results are summarized 
in $ 3  below where two cases are considered. The first case (initial velocity) is 
described by the function hl(r), the second case (initial displacement) by the 
function h2(r). Both these functions involve the complex-valued force coe@cient 
A(u) which describes the hydrodynamic force exerted by the fluid on the body in 
a forced periodic motion of real angular frequency u(q/a)t and of constant ampli- 
tude, see 9 2 below. The present paper will be devoted to a numerical study of the 
functions h1(7) and h2(7). 

2. Equations of motion 
The statements in this paragraph are taken from I, where a detailed derivation 

is given. It is assumed that the equilibrium position of the centre of the circular 
cylinder is in the mean free surface. This point is taken as the origin of rectangular 
Cartesian co-ordinates. Polar co-ordinates are defined by z = rsin8, y = T C O S ~ ,  

where the ray 6 = 0 is taken along the downward vertical. The equilibrium 
position of the cylinder is r = a where a is the radius of the cylinder. The vertical 
displacement y0(t) of the cylinder is to be found. The amplitude of motion is 
assumed to  be so small that all equations can be linearized. Since viscosity is 
neglected and the density p of the fluid is constant it is possible to  describe the 
motion of the fluid by a velocity potential #(x, y; t )  which by symmetry must be 
an even function of 0 and which satisfies the equation of continuity. 

(g2+$)q5(x,y; t )=0 when r > a a n d y > O .  

The linearized condition of constant pressure at the free surface is 

a24 a# 
at2 ay 
- -g -  = 0 when y = 0, 1x1 > a 

(cf. Lamb 1932, $227). On the cylinder the radial velocity components of the 
body and the fluid are equal, 

a q 5 p  = go(t)  cos 6 when r = a, - 477 6 6 6 in-. (2.3) 

Finally there is the equation of motion of the body 

where on the right-hand side the first term is the hydrostatic restoring force, the 
second is the resultant of the hydrodynamic pressures, and the third term is 
the applied vertical force. The mass of the body is &rpa2 (per unit width), by 
the principle of Archimedes. 
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These were the equations which were solved in I by resolving the motion into its 
frequency components (see I, 9 3). The transform potential @(x, y; o) at angular 
frequency o satisfies the equations (for the first problem) 

when r > a, y > 0; 

There is also the radiation condition 

according as w 0. Except for a normalizing constant the equations (2.5)-(2.8) 
are identical, for real w ,  with the equations describing the fluid motiondue to the 
forced periodic heaving of the circular cylinder with time factor e-iot and 
constant amplitude Yo(w), see Ursell(l949). It is known that they define @(z, y ; w )  
uniquely; evidently @ is proportional to Yo(@). The non-dimensionalforce coeficient 
A(w(a/g)*) is now defined by the equation 

[': O(asin0, acos0; w )  cos8d8 = g7riawYo(w)A(w(a/g)i). (2.9) 
J -&I 

The function A is thus in principle a known function which, for real w,  can be 
deduced from published computations on periodic heaving (e.g. Ursell 1957). In  
fact therealpart of A(w(a/g)s) is the usual virtual-mass coefficient, the imaginary 

where A(w) is the wave amplitude at infinity, and A(w)/Y,(w) is the usual wave- 
making coefficient. For further properties of @ and A see I, pp. 314-318. 

3. Analytical results and properties of A(u), hl(7) and h2(7) 

Two problems were treated in I. 
First problem: the cylinder is set in motion by a downward forcefo(t) per unit width. 

The downward displacement yl(t) of the cylinder at time t was found to be 

where 
e--iuT du 

h1(T) = - 
1 - $nu2( 1 + A(u)) * 

In  particular, if the motion is started impulsively at  time t = 0, then it is evident 
that the subsequent displacement ydl(t) is given by 

2 0  FLM. 44 
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where the total impulse per unit width is 

8. J .  Maskell and P. Ursell 

and the integration in fact extends over a short time. Equation (3.3) gives an 
immediate physical meaning to h1(7). In  terms of the initial velocityi,(O) the 
displacement yl(t) takes the form 

since hi(7) + 2/n as 7 + 0; see (3.10) below. 

Xecondproblem: the cylinder is released from rest with an initial displacement y2( 0 )  

The displacement y2(t) at time t was found to be (I, equation (4.9)) 

Y 2 ( 0  = Yz(o)h,(t(g/4% 

where 
u( 1 + A(u)) e-ia7 au. s 1 - &nu2( 1 + A(u)) 

hz(7) = -&i (3.5) 

It was shown that hl(T) = - hL(7). In  the integrals defining h1(7) and h2(7) the 
contour of integration is the real u-axis indented to  pass above u = 0. The 
following properties were also obtained in I. The function A(u) is defined in the 
first place for real values of u but the definition of A(u) can be extended to the 
whole complex u-plane cut along the negative imaginary u-axis where A(u) is 
single-valued but may possibly have poles. A(u) is real along the positive imagi- 
nary u-axis and has a logarithmic infinity at  u = 0. The behaviour of A(u) for 
large u in the upper half-plane was given by Ursell (1953)’ the behaviour in the 
lower half-plane is more difficult to obtain (see I, appendix 2). Crapper (1968) has 
since proved analytically that the asymptotic relation 

R(u) N 1-(4/3nu2)+ ... as U+KJ, (3.6) 

which holds in the upper half-plane, continues to hold when - i n  < arg u < 0 
and when 7r < argu < in, and possibly in a larger angle. (Our numerical work 
shows that (3.6) is in fact valid in the larger angles - < arg u < 0 and n < arg u 
< in.) Further properties of h(u)  are quoted in I, appendix. 

We can infer the behaviour of h1(7) and h2(7) for large and small T from the 
behaviour of the integrands for small and large u respectively. It was found in I 
that 

For large u it is easy to see by using (3.6) that 

h1(7) N - 8 / m 3  and h2(7) N - 4/nr2 as 7-+ m. (3.7) 

and 

2 16 
N---- 

1 
1 - $nu2( 1 + R(u)) nu2 37r2u4’ 

4 4 
~ C U  

4 8 64 
nu 712263 3n3u5’ 

+ U ( 1 + A W )  - 
1 - &nu’( 1 + A(u)) nu( 1 - &nu2( 1 +A)) 

------- (3.9) 
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where these estimates are uniform with respect to  arg u in the upper half u-plane 
and also in parts of the lower half-plane, as we have just noted. Also the functions 
on the left of (3.8) and (3.9) are regular in the whole of the upper half u-plane 
(I, p. 308). The asymptotic behaviour of h1(7) and h2(7) for small 7 can therefore 
be found by term-by-term integration (Doetsch 1950, p. 503) where the path is 
indented to pass above u = 0. Thus 

and 

2 8  = -7-- 73; 
77 9n2 

1 2 
n 9n2 

= 1--72+-74. 

(3.10) 

(3.11) 

Higher terms in (3.10) and (3.11) can be obtained if higher terms in the asymp- 
totic expansion (3.6) of A(u) can be obtained. The next terms in (3.10) and (3.11) 
are believed to be of order 75 and 76 respectively. 

4. Deformation of the contour of integration 
The integrals (3.2) and (3.5) defining the functions h1(7) and h2(7) are not 

convenient for computation when the integration is taken along the real u-axis. 
(The following discussion will apply equally to h1(7) and h2(7), and will be con- 
fined to the right-hand half Re u > 0 of the u-plane ; the values of the integrands 
in the left-hand half are the complex conjugates of the values in the right-hand 
half. Additional notes on the computation are given in the appendix to the 
present paper.) On using the asymptotic estimate (3.6) for R(u) it is seen that for 
large IuI the integrands of h1(7) and h,(7) are of order w2e- iuT  and u-le-iuT 
respectively, so that their magnitudes decrease very slowly along the real 
u-axis where the non-decreasing factor e-iur oscillates rapidly for large 7.  Also, the 
denominator 1 - &u2( 1 +A) has a zero just below the positive real u-axis, at  
u = u,,, say. We have already noted (in 93 above) that A(u), and therefore also 
the integrands, can be continued into the whole u-plane cut along the negative 
imaginary axis. 

Accordingly the contour of integration from 0 to co is now deformed into a 
contour C, which goes from 0 to co, which lies entirely in the fourth quadrant, 
which passes below the pole u = u,,, and which also satisfies the condition that 
no other pole lies between the real axis and C+. The direction of the contour C+ at  
co is chosen close enough to arg u = 0 for the asymptotic relation 

A(u) N 1-(4/3nu2)+ ... as IuI-fco (4.1) 

to be valid between the real axis and C,. It will be seen that there are such con- 
tours C,. The gap at 00 between C+ and the real u-axis is close& at co by a large 
circular arc. 

20-2 
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Then, by Cauchy’s theorem, 
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- 2ni (residue at u = uo), (4.2) 

for the contribution from the large circular arc vanishes by Jordan’s lemma 
(Titchmarsh 1939, $3.122). We must now specify C+ more precisely. The greater 
the angle between C, and the real u-axis, the more rapidly does the exponential 
factor e-iu7 in the integrand decrease along C+. We have noted (see $ 3  above) 
that (4.1) is certainly valid when -in < argu Q 0, and that our computations 
show it to be valid in the larger angle - $ 7 ~  < argu Q 0. We decided to take as 

FIGURE 1. Deformation of the contour of integration. 

our contour of integration C, the ray argu = - t a r 1 $ ;  thus (4.1) is satisfied. It 
was verified, by computing R(u) along a number of rays arg u = const., that R(u) 
(which might have a pole) is regular between arg u = 0 and arg u = - tan-l i, and 
then it was shown, by using computed values of the function arg( 1 - $nu2( 1 +A))  
along argu = 0 and along argu = - tan-li, that there is exactly one pole 
inside this angle. This was later confirmed by another check. For small 7 the 
values of h1(7) and h2(7) were evaluated from (4.2) and also from the polynomials 
(3.10) and (3.11). If there were more than one pole in the angle then these values 
would differ by the residues from the additional poles. In fact they agreed very 
closely near 7 = 0. 

The first term on the right-hand side of (4.2) will be called the integral compo- 
nent, the second term will be called the pohr component. The polar component 
contains the factor e-iUo7 and thusrepresents adamped harmonic motion, andit will 
be seen that this is the dominant term during the greater part of the motion. Since 
it involves only the location of the pole u = u, and the values of the residues at 
uo it can be computed accurately by means of computations in the neighbourhood 
of u,. 

5. Results of the computations 
We have prepared tables of h1(7) and h2(7) in the range 0 6 T Q 20 which we 

believe to be correct to at least 3 places of decimals but which are too long to be 
included here. The functions h1(7) and h2(7) are shown graphically in figures 2 and 
3 on which the polar components are also shown. It is seen that the functions are 
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closely approximated by their polar (damped harmonic) components except 
during the first 1Q cycles. 

Figures 2 and 3 give only a rough idea, and greater accuracy may be obtained 
from figure 4 which shows the integral components &(T)  and i2(7) on a larger 
scale in the range 0 < 7 < 7;  this figure can be extended to 7 = co by means of the 
relations &(T) N - ( S / m )  r3 and i2(7)  N - (4/7r) 7-2 which are accurate to at  least 
2 places of decimals when 7 > 7. The values of h1(7) and h2(7) can then be found by 

0.75 L 
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0.25 

- 0.25 

- 0-5 
I I I I 

0 5 10 15 20 

7 

FIGURE 2. The function h1(7), case of initial velocity; 
- - - -, the polar component. 

FIGURE 3. The function h2(7), case of initial displacement; 
- - - -, the polar component. 
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computing and adding the polar components which are given by the following 
expressions : 

polar component of h1(7) = 0.8818exp ( -  0.1309~)sin(0.9117~- 0.3628), (5.1) 

polar component of h2(7) = 0*9664exp( - 0~1309~)cos(0~9117~- 0.4805). (5.2) 

For large 7 the polar components are exponentially small while the integral 
components are algebraically small. Thus ultimately the non-oscillatory integral 
components are dominant, as was noted in I. In particular the integral component 

0.3 

0.2 

0.1 

0 

-0.1 

- 
I 1 I I I I 

0 2 4 6 8 
7 

A A * 
FIGURE 4. The integral components 1, h1(7) and 2, h2(7). The integral component hj(7) 

( j  = 1, 2) is the difference between hj(7) and the polar component of hj(7). 

of h1(7) is dominant when ( 8 / n ) r 3  > 0.8818exp ( - 0.13097), i.e. when7 > 97, and 
similarly the integral component of h2(7) is dominant when 7 > 61, after approxi- 
mately 9 cycles. The order of magnitude of h2(7) at 7 = 61 is 3 x which is 
negligible; thus the final stage of decay is not of practical importance. 

6. Discussion 
These results can be used to assess the accuracy of certain approximations 

which have been used in ship hydrodynamics. In these it is supposed (see, e.g. 
Havelock 1942) that the motion is governed by a second-order differential 
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equation with constant coefficients; in other words, that the motion is damped 
harmonic. We now see that the best approximation of this kind is obtained by 
retaining the polar component and neglecting the integral component. The 
discrepancy which can be seen from figures 2 and 3, and from figure 4, can be 
reduced by crudely combining the polar component with the initial approxima- 
tion during the first quarter-cycle. When this is done the maximum error in the 
approximation to h1(7) is reduced to 0.03 (attained near the first maximum) but 
the maximum error in h2(7) only to 0.1 (attained near the first minimum). This 
will be too crude for some applications. 

This discussion presupposes, moreover, that the location of the pole and the 
values of the residues at  the pole are known exactly from computations in the 
complex u-plane. In  practice the pole, i.e. the zero of F(u)  = 1 - &nu2( 1 + A(u)) 
may be roughly approximated in the following manner. The values of Re A(%) 
and Im A(u) on the real u-axis are supposed known from published values of the 
virtual-mass and wave-making coefficients, e.g. Ursell(l957). The first approxi- 
mation u1 is taken near that real value of u where 1 - &u2( 1 + Re A(u)) vanishes, 
and the tangent approximation 

is then found. Thus, taking u1 = 0-88 and using accurate values of P(ul) and 
F’(ul), we find that u, = 0.895- 0*134i, which may be compared with the exact 
value 0.9117 - 0*1309i, see appendix 2 below. 

Our numerical work may also be compared with the work of Sretenskii 
(1937) described by Wehausen & Laitone (1960, pp. 619-620) and also more 
briefly in I, 9 1. Sretenskii obtained a pair of linear integro-differential equations 
and then introduced a thin-body assumption which has been criticized by 
Wehausen & Laitone but which enabled him to reduce the problem to a single 
equation which was solved numerically. His curve is reproduced by Wehausen 
& Laitone who draw attention to the difference between a damped harmonic 
oscillation and the solution of Sretenskii’s integro-differential equation. This 
difference is not borne out by our calculations which show that the motion is very 
nearly damped-harmonic except during an initial and a h a 1  stage. It should, 
however, be noted that Sretenskii’s calculations refer to a thin-body approxima- 
tion and that no direct comparison with our work is therefore possible. 

There remains the problem of finding the motion of the fluid, which may now be 
considered as being due to the known motion of the body. We have not yet studied 
this problem. We made a brief attempt at a direct solution of the combined body- 
fluid problem in which the equations (2.1)-(2.4) were replaced by finite-difference 
approximations in (2, y, t )  space but it was quickly seen that this problem is a very 
big one. Our method gives the body displacement accurately while giving little 
information about the fluid motion. 

We are indebted to Mr Ian Gladwell for help and advice with the computations. 
We also wish to express our gratitude to the Science Research Council for the 
research studentship held by one of the authors (S. J. Maskell) during the period 
of this research. 
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Appendix. Notes on numerical computation 
1. The computation of A(u) followed the method described in I, appendix 1. 

The infinite system obtained there (see I, top of p. 316) was truncated and solved 
numerically. When 1 Kal= 1u21 was progressively increased it was found necessary 
to use progressively more equations. The method worked well for both real and 
complex values of u. 

2,  The pole (i.e. the zero of F(u)) was found by an adaptation of the rule of 
false position to complex functions. The starting values for the zero of F(u)  were 
takento be 0-87-0-10i and 0.90-0.14i.Fiveiterationsgaveu = 0.91166- 0.1309Oi 
= b say, for which IP(u)I < 10-5. It was found that J”(b)  = - 2.0904 + 0.763%. 

3. Let the integral components be denoted by &(T) and &(T) respectively. 
Thus, for example, 

where f(u) = [l - $nu2( 1 and where the integrations are along 
arg u = n + tan-,* and arg u = - tan-lt respectively. For small values of the 
parameter 7 and large values of u these integrals converge very slowly, like 
uP2e-iu7, and we were at first unable to achieve acceptable accuracy. This diffi- 
culty was overcome in the following manner for the integral (A 1) for $,(7), and 
similarly for &7). 

The behaviour off(u) = [I - tnu2( 1 + A(u)]-l for large u can be found by using 
the asymptotic formula (3.8) which givesf(%) N - (2/nu2) - ( 16/3n2u4). We chose 
constants A ,  and B, such that 

1.e. 

2 16 
N -  +- +- Bl A ,  

1 + u 2  (1 + u 2 ) 2  nu2 3n2u4 ’ 

B, 2 16 +- 

whence A ,  = 2/n, B, = 2/n+ 16/3n2. We now write 

The integrand in (A 2) now decreases faster than uP4, probably like u - ~ ,  and thus 
numerical integration is feasible. The definite integrals in (A3) are known 
functions : 

du = &n( 1 + 7) e+, 
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as can be shown by contour integration in the lower half u-plane where u = - i is 
the only pole. Similarly the integral for &(r) can be treated, by adding an 
expression of the form 

to the integrand. Details are given in Maskell (1969). 
Checks were applied near r = 0 and near r = co to test the accuracy of the 

computed values of &(7). Near r = 0 the sum of &(r) and of the polar contribution 
(5.1) should agree with the power series (3.10). Near 7 = co the value of &(r) 
should be close to the asymptotic value - ( S / T ) T - ~ .  The corresponding checks 
were also applied to h2(7). The agreement was satisfactory. 
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